Thoughts on the Pseudogap

Michael Norman

Materials Science Division
Argonne National Laboratory
&

Center for Emergent Superconductivity

Vivek Mishra (ORNL) Utpal Chatterjee (Virginia) Juan Carlos Campuzano (UIC)

Outline

1. Impact of pseudogap on spin fluctuation mediated pairing Mishra, Chatterjee, Campuzano, Norman, Nature Physics 10, 357 (2014)

2. d-wave charge order from spin fluctuations

Mishra and Norman, arXiv:1502.02782v2 (to appear, Phys Rev B)

Phase Diagram of the Cuprates

Keimer et al, Nature (2015)

What is the Pseudogap Due to?

1. Spin singlets

6. Orbital currents

2. Pre-formed pairs

7. Flux phase

3. Spin density wave

8. Stripes/nematic

4. Charge density wave

9. Valence bond solid/glass

5. d density wave

10. Combination?

$$A(k,\omega) = I(k,\omega) + I(-k + 2k_F, -\omega)$$

(spectral function)

$$\chi_0(q,\Omega) = \int_{-\infty}^{\infty} d\omega \int_{-\infty}^{\infty} d\omega' \frac{f(\omega) - f(\omega')}{\omega - \omega' + \Omega + i0^+} \frac{1}{N} \sum_k A(k+q,\omega) A(k,\omega')$$

(p-h bubble)

$$\chi(k,\Omega) = \frac{\chi_0(k,\Omega)}{1 - U\chi_0(k,\Omega)}$$

(dynamic susceptibility)

$$V(k,\Omega) = \bar{U}^2 \left[\frac{3}{2} \chi(k,\Omega) - \frac{1}{2} \chi_0(k,\Omega) \right]$$

(pair potential)

$$\Sigma(k, i\omega_n) = T \sum_{q,\omega_m} V(k - q, i\omega_n - i\omega_m) G_0(q, i\omega_m)$$

(normal self-energy)

$$-\frac{T}{N}\sum_{k',\omega_m}V(k-k',i\omega_n-i\omega_m)\mathcal{P}_0(k',i\omega_m)\Phi(k',i\omega_m)=\Phi(k,i\omega_n)$$

(gap equation)

$$\mathcal{P}_0(k',i\omega_m) = G(k',i\omega_m)G(-k',-i\omega_m)$$

(pairing kernel)

ARPES data from a Bi2212 single crystal (T_c=90K, T=140K)

 $\chi(q,\omega)$ for U = 860 meV (left) and 800 meV (right) using ARPES Greens functions

d-wave eigenvalue versus temperature using ARPES Greens functions (FBZ is full Brillouin zone, FSR is Fermi surface restricted)

$$-\frac{T}{N_{\phi}} \sum_{\phi',\omega_m} V_{nm}^{\phi\phi'} \mathcal{P}_0(\phi', i\omega_m) \Phi(\phi', i\omega_m) = \Phi(\phi, i\omega_n)$$

(FS restricted gap equation)

$$V_{nm}^{\phi\phi'} = V(k_{Fx}^{\phi} - k_{Fx}^{\phi'}, k_{Fy}^{\phi} - k_{Fy}^{\phi'}, i\omega_n - i\omega_m).$$

(FS restricted pair interaction)

$$T\sum_{\omega_n} \int_0^{2\pi} \frac{d\phi}{2\pi} \mathcal{V}\cos^2(2\phi) P_0(\phi, i\omega_n) = 1.$$
 (weak coupling gap equation)

$$G(k, i\omega_n) = -\frac{i\omega_n + i\Gamma sgn(\omega_n) + \xi_k}{(\omega_n + \Gamma sgn(\omega_n))^2 + \xi_k^2 + \Delta_k^2}.$$

(model Greens function)

$$V(k,\Omega) = \frac{3}{2}g_{sf}^2 \frac{\chi_{\mathbf{Q}}}{\xi_{AF}^{-2} + 2 + \cos k_x + \cos k_y - i\frac{\Omega}{\Omega_{sf}}}$$

(MMP pair interaction)

Weak coupling d-wave eigenvalue vs T for various pseudogaps Δ_0 [inset is T_c versus Δ_0 (green curve) and T_c vs Γ (black curve)]

 T_c vs pseudogap (Δ_0) for various Γ using MMP pair interaction (inset) [dashed line is temperature maximum of λ vs Δ_0 for Γ =0] d-wave eigenvalue λ vs T for various Δ_0 (main panel)

CONCLUSION (part 1)

Pair breaking effect of the pseudogap is so strong that T_c should be suppressed to zero UNLESS the pseudogap itself is due to pairing

OR

the transition is driven instead by the T dependence of the interaction

Maier, Staar, Scalapino, arXiv:1507.06206

d-wave superconductivity and d-wave charge order Two sides of the same coin?

The work of Sachdev and others has motivated new experiments designed to look for d-wave charge order by x-rays and STM

Comin et al, Nature Matls. (2015)

Fourier STM

Problem 1 – itinerant models tend to predict diagonal (Q,Q) order

Norman, PRB (2007); Melikyan & Norman, PRB (2014)

Sachdev & La Placa, PRL (2013)

Comin et al, Nature Matls. (2015)

Problem 2 – itinerant models typically rely on nesting/hot spots

To address this, we will solve full Brillouin zone strong coupling eqs.

$$T\sum_{k',\omega_m} V(k-k',i\omega_n-i\omega_m)G(k'-\frac{Q}{2},i\omega_m)G(k'+\frac{Q}{2},i\omega_m)\Phi^Q(k',i\omega_m) = \lambda\Phi^Q(k,i\omega_n)$$

$$V(k,\Omega) = \frac{3}{2}g_{sf}^2 \frac{\chi_Q}{\xi_{AF}^{-2} + 2 + \cos k_x + \cos k_y + i\frac{\Omega}{\Omega_{sf}}}$$

 $g_{sf}^{2}\chi_{Q}$ – adjusted to get d-wave superconducting T_{c} Ω_{sf} – set by energy scale of spin fluctuations (RIXS, INS) ξ_{AF} – set by q dependence of spin fluctuations (INS)

- G (1) bare G, but based on renormalized dispersion from ARPES
 - (2) full G dressed by spin fluctuations

Strong coupling calculations using a renormalized bare Greens function do not find bond charge order (left); using a fully dressed G leads to an additional suppression of diagonal charge order as well (right)

Going to longer antiferromagnetic correlation lengths does not really change the story

Inclusion of a modest coupling to B_{1g} phonons does not help either

CONCLUSION (part 2)

An itinerant model for the charge order is unlikely

The d-wave order is likely due to Coulomb repulsion between the doped holes on the oxygen sites, with each unit cell maintaining the same hole count

